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A review is given of research activities since 1976 on the nonlinear Boltzmann 
equation and related equations of Boltzmann type, in which several redis- 
coveries have been made and several conjectures have been disproved. Subjects 
are (i) the BKW solution of the Boltzmann equation for Maxwell molecules, first 
discovered by Krupp in 1967, and the Krook Wu conjecture concerning the 
universal significance of the BKW solution for the large (v, t) behavior of the 
velocity distribution function f(v,t); (ii) moment equations and polynomial 
expansions of f(v, t); (iii) model Boltzmann equation for a spatially uniform 
system of very hard particles, that can be solved in closed form for general 
initial conditions; (iv) for Maxwell and non-Maxwell-type molecules there exist 
solutions of the nonlinear Boltzmann equation with algebraic decrease at 
v ~  oe; connections with nonuniqueness and  violation of conservation laws; 
(v) conjectured super-H-theorem and the BKW solution; (vi) exactly soluble 
one-dimensional Boltzmann equation with spatial dependence. 

KEY WORDS: Boltzmann equation; Maxwell molecules; very hard parti- 
cles; Krook Wu conjecture; super-H-theorem. 

1. INTRODUCTION 

"The Boltzmann equation is Fourier transformed with respect to velocity 
and the structure of the resulting equation investigated ( . . . ) .  A single 
non-equilibrium solution is constructed in closed analytical form." Thus  
reads a quotation from the abstract of Krupp's dissertation (1) of 1967, 2 in 
which he derives the following solution of the nonlinear Boltzmann equa- 
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tion in a spatially uniform gas Of Maxwell molecules: 

f(v,t)=(2~rs)-d/2exp(_v2/2s)[1 1--S(2s d---v2)ls  

with 

(la) 

s(t) = 1 - e x p [ - X ( t  + to) ] ( lb)  

Here X is a positive quantity, given in terms of an integral of the differential 
scattering cross section, and d is the number of translational degrees of 
freedom ( d - - 3  in Krupp's case); t o is an arbitrary constant, chosen such 
that the velocity distribution function f(v, t) >1 0 for all times t >~ 0. 

This solution, nowadays called the BKW solution, was rediscovered in 
1976 by Bobylev, (2) Krook and Wu, (3) and has created an enormous 
revival of interest among physicists in exact solution of the Boltzmann 
equation (more than one hundred publications over the past six years, for 
which I refer to some recent reviews(4-6)). This activity is gradually fading 
away. It is my task to review these activities here and highlight the most 
important developments. 

Since the main emphasis will be on spatially uniform systems, I write 
Boltzmann's famous nonlinear integrodifferential equation in the form 

o,Z(v,t)=fdwfdfi gI(g,x)[f(v',t)f(w',t)-f(v,t)f(w,t)] (2) 

Here g = v - w  is the relative velocity, ! (g ,  X) is the differential scattering 
cross section; fi IL g' is a unit vector in the direction of scattering, where 
X = a r c c o s i  " g) is the scattering angle and v', w' are postcollisional veloci- 
ties. 

This equation possesses conservation laws for the total number of 
particles, momentum, and energy, which read in appropriate units: 

fdv f(v, t)( 1, v, v 2) = ( 1,0, d ) (3) 

and its solution approaches for long times the Maxwellian velocity distribu- 
tion 

fo(v) = (2~r)- d/2exp( -- V2/2) (4) 

The basic goal of recent research interests is to solve the spatially uniform 
Boltzmann equation (2) in the case of general intermolecular potentials for 
a given initial distribution f(v, 0) (Cauchy problem). Existence and unique- 
ness proofs of different types of solutions for different types of interactions 
have been reviewed recently (7'8) and the mathematical theory of the spa- 
tially uniform nonlinear Boltzmann equation is nearly complete. What is 
lacking are explicit solutions, which can give some understanding of the 
detailed approach to equilibrium, in particular of the high-energy tail of the 
distribution function." 
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To tackle such problems one introduces simplifications of a mathemat- 
ical and physical nature. A major simplification occurs in the case of 
Maxwell molecules [interaction potential U(r)= a/r4], where the collision 
rate gI (g ,x )= c~(cosx) only depends on the scattering angle. (9~ However, 
many more models have been considered recently (4'6) which introduce 
further simplifications of the quadratic collision term. They are essentially 
scalar Boltzmann-type equations, which occur in many fields inside and 
outside physics, (4'1~ as formulations of stochastic processes in which 
binary interactions determine the time rate of change of the distribution 
function, F(x, t). This scalar Boltzmann equation has the general form: 

O f (x,t) = fx ~ du~udy I K(xy; u)F(y, t )F(u - y, t)  

- K(yx; u)F(x, t)F(u - x, 1)] (5) 

where K(xy; u) represents the transition rate in binary interactions (y, u - 
y) ~ (x, u - x) conserving the sum of the state variables of the interacting 
particles. In the kinetic theory of gases the state variable x is the transla- 
tional energy. 

In these equations the total number of particles, fF(x, t )dx,  and the 
total energy, fxF(x , t )dx ,  are conserved. The stationary solution can be 
calculated from the detailed balance condition, obtained by putting { . . .  ) 
on the right-hand side of (5) equal to zero. 

Next, I will mention a few of the fashionable model-Boltzmann 
equations, and it should be no surprise that several have been examined 
before in other fields of science. 

First, consider the model, introduced by Tjon and Wu, (~2) i.e., 

K(xy; u) = 1/u (6a) 

and more generally the diffuse scattering models, introduced by Ernst (13) 
and Futcher eta/,, (14) i.e., 

K(xy, u) -~ [x(u - x ) ] P - ' / I B ( p ,  p)u 2p I l (6b) 

where B(p,p)=F2(p)/F(2p).  In probability theory Nishimura (1~ had 
already extensively studied these models (6a), (6b) in 1974 by considering 
their sequentially soluble moment equations. He further showed that a 
one-dimensional model Boltzmann equation, introduced by Kac, (15~ can be 
cast into the form of a scalar Boltzmann equation with a transition kernel 
(6b) with p = 1/2. 

Another Maxwell-type model of Ref. 16, in which the directions of the 
relative velocity before and after collision are at right angles, corresponds to 
the kernel 

K(xy; u) = 6(x - �89 (6c) 
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The same model, together with its moment equation, has already been 
studied in 1963 by Curl (~) for the time evolution of the drop size distribu- 
tion in the theory of disperse phase mixing. 3 

The previous examples (6a)-(6c) have in common that the loss term on 
the right-hand side of (5) can be reduced to - o  oF(x ,  t), where the total 
collision frequency ~0 is a constant on account of particle conservation. 
Therefore, these models are all Maxwell-type models, ,to which I return in 
Sections 2 and 3. 

As a last example I mention the very hard particle (VHP) model, 
introduced by Rouse and Simons (16) in its discrete form and by Hendriks 
and Ernst (17) in its continuous form. It will be considered in Section 4, and 
corresponds to the transition kernel 

K ( x y ;  u) = 1 (7) 

Here the loss term in (5) reduces to - ( x  + 1)F(x, t) on account of particle 
and energy conservation, and the total collision frequency, oa(x) = x + 1, 
depends on energy. Hence the VHP model is not a Maxwell model. 

The subsequent sections are organized as follows: the BKW solution 
and the Krook-Wu conjecture are discussed in Section 2. In Section 3 I 
discuss moment equations and polynomial expansions for Maxwell models. 
The Cauchy problem for the VHP model is solved in closed form in Section 
4. Power law solutions, violation of conservation laws and nonuniqueness 
are discussed in Section 5, and Section 6 deals with the super-H-theorem. A 
soluble model-Boltzmann equation for a spatially nonuniform system is 
treated in Section 7. 

2. BKW SOLUTION AND KROOK-WU CONJECTURE 

Fourier transformation of the Boltzmann equation for Maxwell mole- 
cules yields an elegant method to obtain the BKW solution. Bobylev (2) has 
shown that the characteristic function or Fourier transform of the distribu- 
tion function: 

= fdv f(v, t)exp( - ik. v) (8) 0( k, t) 

satisfies the following equation: 
A A A 

0,0(k, t) = f dn c~ (k.  fi) { 0( �89 k (k + fi), t)•( �89 k(l~ - fi), t) - 0(k, t)q)(0, t) } 

(9) 
This equation represents a drastic, simplification of the Boltzmann equation 
for Maxwell molecules, since the collision term in (2) is a ( 2 d -  1)-fold 
integral, which is reduced to a ( d -  1)-fold integral in the Fourier represen- 

3 Reference due to R. M. Ziff. 
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tation (9). For an isotropic distribution function, f(Iv], t), the characteristic 
function q~(k, t) depends only on the length Jk] = k. 

Bobylev showed the following symmetry properties of this equation: 
(i) If q~(k, t) is a solution of (9), then exp(-�89 t) is also a 

solution of the same equation (Bobylev symmetry). 
(ii) Equation (9) is invariant under a group of similarity transforma- 

tions. Consequently, it allows similarity solutions of the form ~,(k,t) 
= q~(ke-Xt/2), in which the number of independent variables is reduced by 
one. 

Now it is easy to find the similarity solution ~(k) = (1 + aka)exp(bk2), 
which becomes (after imposing the physically relevant boundary condi- 
tions(6)): 

~,(k,t) = (l - �89 f lk2)exp[ -  �89 - /~)] (10a) 

with 

and 

fl(t) = exp [ -2 t ( t  + to) I (lOb) 

)k ~- �88 f d l l o / ( l l . l ~ ) [ l  -- (II'1~) 2] (10C) 

This similarity solution is a special case of the canonical expansion, used by 
Krupp (l) for general interaction potentials: 

oo 
*(k , t )=exp( - �89  k2) 1-I [1-a,,(t)k21exp[%~(t)k2 ] (11) 

m=0 
In (10) only % ( 0  is nonvanishing. Inversion of the Fourier transform (10) 
directly yields the BKW solution (1). 

For more general Maxwell models one has found by a variety of 
methods a special BKW solution of the general form (6) 

F(x,t)/Fo(x ) = {A + xB }e -~x (12) 

where Fo(x ) is the stationary solution of the scalar Boltzmann equation (5), 
and A, B, and c~ are relatively simple functions of time. 

Such exact solutions are of interest on several scores: rareness, forma- 
tion of Maxwell tail, and Krook-Wu conjecture. I start with a discussion of 
the second point. 

In Fig. 1 the BKW solution R ( v , t ) = f ( v , t ) / f o ( v  ) is plotted as a 
function of the velocity for several values of the scaled time ~" = X(t + to). 
Notice the extremely slow (nonuniform) approach to the equilibrium solu- 
tion R(v, oe )=  1 in the high-energy tail of the distribution function. For 
thermal velocities, i.e., v ~< 1, the typical relaxation time is, of course, the 
mean free time, proportional to 1/X. Typical relaxation times, to(v ), at large 
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velocities can be obtained from (lO) by taking v large and/~(t) small, i.e., 

R(v ,  t) = f ( v ,  t ) / fo (v  ) ~-- (1 + �89 flv2)exp( - �89 2) (13) 

An estimate of the characteristic time to(V ) follows from the relation 
v2fi(to) ~ 1, yielding to(V ) ~ (log v)/)~. Equation (13) shows that for  a given 
large time t one can always f ind  a sufficiently large velocity, where the factor 
e x p ( - i  2 /?v ) is not close to unity, and where the solution (13) cannot be 
linearized around its equilibrium value. 

This nonuniform approach to the Maxwellian shows the inadequacy of 
the linearized Boltzmann equation for describing relaxation phenomena in 
the high-energy tail of the distribution function. Similar nonuniform relax- 
ation processes have been found in the exactly solvable very hard particle 
model of Section 4. 

Next, I turn to the Krook-Wu conjecture. (3) The possible importance 
of the BKW solution has been considerably increased by the following 
conjecture formulated by Krook and Wu: "An arbitrary initial state tends 
first to relax towards a state characterized by the similarity solution. The 
subsequent stage of the relaxation is essentially represented by the similar- 
ity solution with an appropriate phase." 

The first evidence against the validity of this conjecture was found by 
Tjon (18). from the scalar Boltzmann equation (5) with transition kernel (6a). 
He obtained numerical solutions for initial states that relax to equilibrium 
in a manner qualitatively different from the BKW solution. His results can 
be seen in Fig. 2, where the solid lines show an interesting relaxation 
phenomenon, not present in the BKW solution. The high-energy tail-- 
initially empty--builds up at a fast rate, overshoots its final equilibrium 
value, and exhibits a transient high-energy tail in the distribution function 
with an overpopulation, significantly larger than the Maxwell value. How- 
ever, one should keep in mind that the total fraction of particles in the 
energy range under discussion may easily be as low as 10 -5o . The dotted 
lines in Fig. 2 represent the decay of an initial distribution, exhibiting a 
monotonic increase of the distribution function at large values of the 
energy, as in the BKW solution. 

Analytical evidence against the validity of the conjecture was first 
given by Alexanian (19) and Hauge, (2~ who formulated conditions on the 
initial distribution f ( v ,  0), determining whether the final approach to the 
Maxwellian would be from above or from below. For a review I refer to 
Refs. 4 and 6. 

On the basis of the numerical and analytic evidence against the 
conjecture and in accordance with most publications on the sub- 
ject,(4,6,19 21) I conclude that the conjecture is incorrect with very high 
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Fig. 2. The ratio R(x, t)= f(v, t)/fo(v) for the two-dimensional Maxwell model (6a) as a 
function of the time t at various values of the energy x = �89 v2. (18) The initial distributions 
consist of two delta peaks, located at x = 0.4 and 2.0 (dashed lines) and at x = 0,4 and 3.6 
(solid lines). 

probability. Its main  accompl ishment  was the stimulus it provided in 
searching for exact solutions of the nonlinear Bol tzmann equation. 

In recent years more  careful estimates for the asymptot ic  behavior  of 
f(v,  t) at large v and t have been given by Bobylev (22) for special classes of 

initiai distributions. 
The transient overpopulat ion phenomenon ,  seen by Tjon, (18) has also 

been studied in a dense system of Lennard-Jones  particles by means of 
molecular  dynamics,  (23) and the results are in qualitative agreement  with 
the criteria of Alexanian and Hauge.  

3. MOMENT EQUATIONS AND POLYNOMIAL EXPANSIONS 

This section, like the previous one, deals exclusively wi th  Maxwell-type 
models. In  this case the general solution of the nonlinear  Bol tzmann 
equation will be given in the form of an expansion in or thogonal  polynomi-  
als. The coefficients in this expansion, called polynomial  moments ,  as well 
as the ordinary moments ,  can be found sequentially, given their initial 
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values, i.e., f(v,O). Therefore, one possesses the general solution of the 
initial-value problem within a certain Hilbert space, provided the series 
converges. 

In hindsight one can, of course, say that the essential ideas were 
already present in the older literature. In 1955 Kac (15) proposed a one- 
dimensional model-Boltzmann equation of Maxwell type, and showed that 
the general solution can be given as series in the Hermite polynomials. The 
coefficients in this series, the Hermite moments, satisfy a recursively soluble 
set of differential equations. 

As early as 1949 Grad (24) showed that the first few (tensor) Hermite 
moments satisfy a similar set of equations, and Truesdell (25) found in 1956 
the same for the ordinary velocity moments. Similar recursive systems of 
moment equations for the kernels in (6c) and (6b) have been discussed, 
respectively, in 1966 by Curl, (11) and in 1974 by Nishimura. (1~ 

In recent years ordinary and polynomial moment equations for Max- 
well models have been extensively discussed in the literature. (.4'2~ 
The only essentially new result of recent years seems to be the observation 
that the ordinary moments and polynomial moments (both properly nor- 
malized) satisfy exactly the same set of moment equations. (13'6) 

In order to discuss these results I have to restrict the allowed distribu- 
tion functions f(v, t) = R(v, t)fo(v ) to the Hilbert space with norm 

= i i R l l  2 =fdvfo(v)lR(v,t)12< ~ (14) N(t) 

which is sufficient for the existence of all moments. Power law solutions, for 
which only a finite number of moments exists, will be examined in 
Section 5. 

For convenience I only consider isotropic velocity distributions, and 
present a short derivation of the polynomial expansion for that case. The 
characteristic function depends now only on the length of k, and generates 
the normalized moments M,(t) through the Taylor expansion: 

O(k,t) = ~ ( -  �89 (15) 
x = O  

with 

+ n)] fdv( �89 (16) M,( t )=[F( �89189 

The conservation laws guarantee the relations Mo(t) = Ml(t) = I. Inserting 
(15) into (9) and equating the coefficients of equal powers of k on both 
sides of the equation yields the moment equation for Maxwell molecules: 

n - - I  

M. + A.M., = ~.. I~.kMkM~_k (17) 
k = l  
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where 

_ 1 �9 1 - ! ~ . ~  n 

/x" +t't n! l! 

A. =/x00(1 + 8.0 ) - m 0 - / ~ . .  (19) 

The most important feature of these nonlinear moment equations is of 
course that each M.(t) can in principle be found sequentially, where M.(0) 
is given through (16) and f(v, 0). This property of Maxwell molecules was 
already known for a long time; perhaps even to Maxwell himself. (25) 

As the next step I write an alternative expansion of q~(k, t), viz., 

g~(k,t) = ~ ( �89 (20) 
k = 0  

where co(t ) = 1 and el(t ) = 0 by virtue of the conservation laws, and 
cn(oo ) = 8n0. As a consequence of Bobylev's symmetry property discussed 
below (9), the coefficients cn(t ) satisfy exactly the same set of equations (17) 
as the ordinary moments M,(t). The expansion (20) can be Fourier-inverted 
term by term and yields the Laguerre series for the distribution function for 
general dimensionality d = 2m: 

f (v, t)  =f0(v)  1 + 2 cn(t)L(~m-l)(�89 v2 (21) 
n = 2  

The coefficients %(t) are the polynomial moments 

n[ F(m) 
;dv  L(m- l) (�89 (22) c (t) - r(m + .) 

which can be found recursively from (17), given c,(0). Thus we have the 
general solution of the Cauchy problem in the Hilbert space (14). 

For the scalar Boltzmann equations of Maxwell type one has found 
similar expansions in orthogonal polynomials, and similar recursively solu- 
ble moment equations. Extensions to anisotropic velocity distributions for 
Maxwell molecules have been given in Refs. 28 and 29. 

The above solutions have been extensively studied numerically, (2~ 
and convergence proofs of these expansions have been given for special 
classes of initial distributions. (21'29'3~ 

4. VERY HARD PARTICLE (VHP) MODEL 

This model describes a gas of particles with only two translational 
degrees of freedom. The scattering laws are stochastic (i.e., total momentum 
is not conserved), such that binary collisions (v, w ~ v ' , w ' )  occur with a 
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_ l W 2 (16,17) Alternatively,(lv) the probability 6(E - E'), where E = ~ I)2 .jr 2 . 

model may be interpreted as deterministic (total energy and total momen- 
tum are conserved during two-particle scattering), and the differential 
scattering cross section is given by I (g ,x )  = ~g[sinx[. 

The interest of this model lies in its solubility. It is the only model for 
which the energy-dependent distribution function of the nonlinear Boltz- 
mann equation has been obtained in closed form for arbitrary initial 
conditions. Unfortunately, the model has the unphysical feature that the 
scattering cross section increases as (energy) 1/2, whereas in real systems it is 
bounded by a constant, as in hard-sphere systems. Hence the relaxation at 
high energies will be too fast. 

It is most convenient to discuss the model in terms of the energy 
distribution function F(x, t). It satisfies a scalar Boltzmann equation (5) 
with transition kernel (7): 

(0, + x + l ) r (x , t )  = ( ~ d u ( " d y  g ( y , t ) F ( u  - y , t )  (23) 
Jx JO 

where the loss term has been simplified by the help of particle and energy 
conservation. The convolution structure of the collision term suggests the 
use of Laplace transformations. Therefore, I introduce 

G(z, t) = fo~ dX e-ZXF(x, t) (24) 

and transform the Boltzmann equation (23) into 

(0, - a~ + 1)C = ~- (1 C ~) (25) 

This is a first-order nonlinear partial differential equation, which is soluble 
by standard methods. Its general solution reads: 

+(z + t) + (z - 1)e -t  
GCz, t) = (26) 

(z  + + t) - e - '  

where the arbitrary function ~(z) can be determined through the initial 
condition, G(z, 0). Thus, the energy distribution function, 

g(x , t )  = (2~ri) - 1 ~ i ~  + ~ a - i o c + ~ d z e Z X G ( z ' t )  (27) 

constitutes the solution to the Cauchy problem for the VHP model. This 
solution is unique provided the admitted functions F(x, t) are restricted to 
functions decreasing faster than x-3  at large x (see Section 5). 

This closed form solution has been analyzed in great detail and many 
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questions regarding approach to equilibrium, formation of Maxwell tails, 
etc. have been answered. (17,6) 

For comparison I also quote the scalar Boltzmann equation for the 
related Maxwell model (6a): 

(a t+  1)F(x ' t )  = f ,  m du foUdy F ( y ' t ) F ( u  - u (28) 

which becomes after Laplace transformation (12~ 

(a, + 1)3~(zG)= G 2 (29) 

This is a second-order nonlinear partial differential equation, of which the 
general solution is not known in closed form. Of course, there exists again 
the Laguerre series expansion of the solution, which forms the subject of 
many papers. (14,21,26) 

5. POWER LAW SOLUTIONS FOR MAXWELL AND 
NON-MAXWELL MODELS 

In Section 3 I considered solutions of the Boltzmann equation for 
Maxwell models, which belong the the Hilbert space with norm (14). 
However, this integral (14) has no physical meaning. The only physical 
requirements are that the total number of particles and total energy are 
finite. 

Therefore, Bobylev (2~ has considered solutions (eigenfunctions) of the 
linearized Boltzmann equation for Maxwell molecules with a power law 
decrease at large velocities. Cornille and Gervois (31) have constructed 
similar solutions to the nonlinear Boltzmann equation for a Maxwell-type 
model. The above solutions do not belong to the Hilbert space, (14) the 
ordinary and polynomial moments do not exist beyond a certain order, and 
the Laguerre series (21) no longer represents the solution of the nonlinear 
Boltzmann equation for Maxwell models. 

First I consider Maxwel l  models and show that solutions, such as 
found in Refs. 2 and 31, can be constructed for general dimensional 
Maxwell models, provided the total number of particles and total energy 
are finite. For convenience I take isotropic velocity distributions, so that 
go(k, t) in (8) depends only on [k[. Now, I look for solutions of (9) in the 
form 

-~2/2( } go(k, t) = e 1 + ~ Ca(t)k  2a (30) 
a > l  

where a > 1 since the total energy must exist. Insertion of (30) into (9) leads 
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to the relations 

E (Ca + AoCa) k2a 
a > l  

1 2 a + a "  ( ^ A 
= a' (31) 

a,a" > 1 

with A a defined in (19). There exist several choices of the index a, such that 
(31) reduces to a recursively soluble set of equations. (3~) A possible choice 
is 

a = a(n) = (n + M)/~ (n = 0, 1 , 2 . . .  ) (32) 

where M is a positive integer and ~ > M. After having determined Ca(,)(t), 
Fourier inversion of (30) yields 

f (v ' t )=f~  1+ n=0~b~( t ) lF l ( -a(n) ;m; �89  (33) 

with 

bn(t ) = C~<n>(t)r(m + a(n))/r(m) (34) 

where iF1 is a confluent hypergeometric function and m = d/2. If a = n 
the function IF1 reduces to the Laguerre polynomial L (m-l), and (33) 
reduces to (21), which is contained in the Hilbert space (14). For general 
a ~ i n t e g e r ,  the functions fo(v)lFl(�89 2) have power law decrease like 
v -2a-2 at v-~  oo. The corresponding eigenvalues A a belong to the continu- 
ous part of the spectrum, which is continuous down to zero (corresponding 
to conserved quantities). Consequently, in the class of initial conditions 
with power law decrease at v ~ ~ ,  the asymptotic relaxation rate (related 
to the spectrum of the linearized Boltzmann equation) may be arbitrarily 
slow. 

The previous discussion shows that in the case of Maxwell models 
there exist solutions of the Boltzmann equation, having powerlike decrease 
at large v and lying outside the usual Hilbert space (14). 

For  non-Maxwell models the situation is different. Cornille and 
Gervois (32) have shown the existence of solutions (eigenfunctions) of the 
linearized Boltzmann equation in the case of hard spheres, decaying like 
v -6 as v-~oo.  However, such solutions must be rejected because they 
violate energy conservation. It was further shown (33-34) that the Cauchy 
problem for the Boltzmann equation does not have a unique solution if the 
above power law solutions are admitted. Such solutions correspond in fact 
to an influx of particles from infinite energies at an arbitrary rate. (34) 

To summarize the present situation on power law solutions of the 
Boltzmann equations I list some properties (only part of which have been 
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proven(32)). Consider an interparticle potential with gl(g,x)--gVc~(X) 
(where Maxwell molecules have l' = 0, hard spheres ~, = 1, and very hard 
particles l' = 2); then 

i. For particles softer than Maxwell molecules ( ' / <  0), the solution of 
the initial value is unique and energy conservation holds provided admitted 
solutions f(v, t) decrease faster than l/vd+2 at v ~ oe. 

ii. For hard interparticle interactions (T > 0), uniqueness and conser- 
vation laws are guaranteed provided admitted solutions decrease faster 
than 1/va+2+L 

iii. When solutions decaying like 1 /v  a+2+v are admitted for T > 0, 
there exist an infinite number of solutions to the initial value problem. 

iv. There exists a continuous spectrum of the linearized Boltzmann 
equation such that the zero eigenvalue is not an isolated part of the 
spectrum. For T > 0, the corresponding eigenfunctions, decaying for large v 
like 1 / v a+ 2+ 7, violate energy conservation. Furthermore these eigenfunc- 
tions do not belong to the standard Hilbert space (14). 

6. S U P E R - H - T H E O R E M  

According to Boltzmann's H-theorem the approach to equilibrium of 
any solution f(v, t) of the Boltzmann equation (2) is accompanied by a 
monotonic decrease of the H-function: 

H(t) = fdv f(v, t)ln f(v, t) (35) 

Thus dH/dt ~< 0, the equality holding for equilibrium. For the scalar 
Boltzmann equation (5) the H-function is defined as (~~ 

H(t) f axF(x,t)ln(F(x,t)/go(x)) (36) 

where Fo(x ) is a stationary solution of (5). 
Some years ago a number of extensions of the standard H-theorem 

were proposed by McKean (3s) and Harris. (36) They speculated on the 
possibility that H(t) might be completely monotonic, i.e., 

( -  )"a"H/at" >1 0 (37) 

for all n = 1,2 . . . . .  This super-H-theorem, as McKean conjectured, might 
single out the H-function as the correct nonequilibrium entropy from a 
large class of functions that also lead monotonically to the correct value of 
the equilibrium entropy. 

Since all proofs and disproofs of the super-H-theorem, given before, 
apply only to extremely simplified model-Boltzmann equations, Ziff, 
Merajver, and Stell (37) investigated the alternating derivative property for 
the BKW solution (1), which is an exact solution to a nontrivial model- 
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Boltzmann equation. These authors transformed d H / d t  for the BKW 
solution into the form 

dH 1 (oo xl+a/2e.-X 
- -  - 3o d x  (38) dr r ( d / 2 ) ( e  ~ - l) 2 (x + y)2 

where r = X(t + to), x = v2/2,  a n d y  = e ~ - 1 - d /2 ,  and showed that (37) 
is valid up to 30 with d-values ranging from 1 to 6. They concluded that 
their results strongly support the validity of the super-H-theorem. 

However, shortly thereafter Olaussen, (38) Garret (39) and Lieb (4~ dis- 
proved the theorem. It is amusing to mention Olaussen's estimate that (37) 
ceases to be valid for n-values around one hundred. 

7. A SOLUBLE MODEL BOLTZMANN EQUATION WITH 
SPATIAL DEPENDENCE 

So far all models considered were restricted to spatially uniform 
systems. For the spatially nonuniform case the only soluble model Boltz- 
mann equation has been constructed recently by Ruijgrok and Wu. (40 
They consider particles on a line with positions x E ( -  m, oc) and velocities 
( + 1 , - 1 ) ,  where f + ( x , t )  and f _ ( x , t )  are the distribution functions for 
these velocities. The Boltzmann equation for their model has the form 

(0, + Ox)f + = f +  f _  - a f  + + flf  _ 
(39) 

(0 ,  - Ox) f _  = - f +  f _  + a f +  - f l f _  

where a and fl are two positive constants. There are three collision 
processes: ( +  - ) 4 ( +  +):  ( + ) 4 ( - )  and ( - ) 4 ( + )  with rate constants 
1, a, and fl, respectively. 

The absence of the restituting collisions ( +  + ) ~  ( + - )  means viola- 
tion of detailed balance and of microscopic time reversal invariance. This 
fact is the basic reason for solubility of the present model. 

For the explicit form of the solution for general initial conditions I 
refer to the original literature. If a < fi there exists a unique spatially 
uniform equilibrium solution; if a > fi, then (39) admits special solutions 
that are shock-waves. As applications of their general solution the authors 
study the asymptotic behavior of f+ (x, t) for large t, and the interaction of 
shock waves. 

To summarize, I list as conclusions on exact solutions of the spatially 
uniform nonlinear Boltzmann equation the following: 

�9 The special BKW-solution and the general Laguerre series solution 
for Maxwell molecules and similar models are essentially rediscoveries of 
known results. 
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�9 The  K r o o k - W u  conjec ture  on the universal  s ignif icance of the 
B K W  solut ion and  the M c K e a n - H a r r i s  conjec ture  on the s u p e r - H - t h e o r e m  
do not  hold.  

�9 Laguer re  series solut ions for Maxwel l  molecules  are adequa t e  at  
thermal  velocities,  bu t  i nadequa te  at  very large velocities.  I t  would,  there- 
fore, be des i rable  to have  closed form solut ions or  a sympto t i c  solut ions 
(v -~ ~ )  for Maxwel l  molecules  and  other  more  realist ic in terac t ion  models .  

�9 The  Cauchy  p r o b l e m  for the very h a r d  par t ic le  model  has  been  
solved in c losed form for general  init ial  condi t ions ,  bu t  the in terac t ions  are 
phys ica l ly  unrealist ic .  

�9 F o r  the non l inear  Bo l t zmann  equa t ion  in the spatially nonuni form 
case there exists an exact ly  soluble  mode l  of Rui jg rok  a n d  Wu.  
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